American Institute of
Aeronautics and Astronautics
Paper AAS 04-246

Keeping a Spacecraft on the Sun-Earth Line

Carlos Roithmayr
NASA Langley Research Center, Hampton, Virginia
Linda Kay-Bunnell
Analytical Mechanics Associates Inc., Hampton, Virginia

Overview

5se

- The need to keep a S/C on the Sun-Earth line
- Negating the lunar perturbation with propulsion
- Approximation of the lunar perturbation
- Estimate of monthly $\Delta \mathrm{V}$ requirement
- S/C fixed at Sun-Earth \mathcal{L}_{2}
- S/C free to move along Sun-Earth line
- Excursions with and without lunar perturbation
- Conclusion

Why keep a S/C on the Sun-Earth Line?

- Study Earth's atmosphere as it occults sunlight
- Hourly measurements at all latitudes
- Global, high-resolution 3D maps of $\mathrm{CO}_{2}, \mathrm{O}_{3}, \mathrm{O}_{2}, \mathrm{CH}_{4}$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}$
- Can't be done continuously or globally from LEO
- Sun-Earth \mathcal{L}_{2} offers a unique vantage point
- Must stay within 200 km of the Sun-Earth line
- "Standard" orbits won't work
- Lissajous and halo orbits stray far from Sun-Earth line
- Nearly rectilinear halo orbits are perpendicular to line between primaries, and don't account for 4th body perturbation

Views from the

 Neighborhood of Sun-Earth \mathcal{L}_{2}

Four-body System

February 4, 2004

Relative Motion of Earth and Spacecraft

Motion of Earth \& S/C perturbed by Sun and moon

$$
\frac{d^{2} \mathbf{r}}{d t^{2}}+\frac{G\left(m_{1}+m_{2}\right) \mathbf{r}}{r^{3}}=\frac{\mathbf{p}}{m_{2}}-G\left[m_{3}\left(\frac{\mathbf{d}_{3}}{d_{3}{ }^{3}}+\frac{\vec{\rho}_{3}}{\rho_{3}{ }^{3}}\right)+m_{4}\left(\frac{\mathbf{d}_{4}}{d_{4}{ }^{3}}+\frac{\vec{\rho}_{4}}{\rho_{4}{ }^{3}}\right)\right]
$$

where $\mathbf{p} / \mathrm{m}_{2}$ is propulsive force per unit mass applied to S / C. Choose $\mathbf{p} / \mathrm{m}_{2}$ to cancel lunar perturbation,

$$
\frac{\mathbf{p}}{m_{2}}=G m_{4}\left(\frac{\mathbf{d}_{4}}{{d_{4}}^{3}}+\frac{\vec{\rho}_{4}}{\rho_{4}{ }^{3}}\right)
$$

to reduce the four-body problem to a three-body problem:

$$
\frac{d^{2} \mathbf{r}}{d t^{2}}+\frac{G\left(m_{1}+m_{2}\right) \mathbf{r}}{r^{3}}=-G m_{3}\left(\frac{\mathbf{d}_{3}}{d_{3}^{3}}+\frac{\vec{\rho}_{3}}{\rho_{3}^{3}}\right)
$$

Note

By using propellant to cancel the effects of lunar gravitation, the problem is reduced to one of restricted three-body motion, and one may hope to keep the spacecraft near an unstable collinear equilibrium point \mathcal{L}_{2} with very little additional propellant.

Approximation of Lunar Perturbation

Rewrite the lunar perturbation

$$
\frac{\mathbf{p}}{m_{2}}=G m_{4}\left(\frac{\mathbf{d}_{4}}{d_{4}{ }^{3}}+\frac{\vec{\rho}_{4}}{\rho_{4}{ }^{3}}\right)=G m_{4}\left(\frac{\mathbf{r}-\vec{\rho}_{4}}{\left|\mathbf{r}-\vec{\rho}_{4}\right|^{3}}+\frac{\vec{\rho}_{4}}{\rho_{4}{ }^{3}}\right)
$$

Use binomial expansion ($r \approx 4 \rho_{4}$) and neglect inclination of moon's orbit plane to the ecliptic,

$$
\frac{\mathbf{p}}{m_{2}} \approx G m_{4}\left\{\left[\left(\frac{1}{\rho_{4}{ }^{3}}+\frac{2}{r^{3}}\right) \rho_{4} \cos \theta_{4}+\frac{1}{r^{2}}\right] \hat{\mathbf{a}}_{1}+\left(\frac{1}{\rho_{4}{ }^{3}}-\frac{1}{r^{3}}\right) \rho_{4} \sin \theta_{4} \hat{\mathbf{a}}_{2}\right\}
$$

Propulsive force per unit mass to counter lunar perturbation

Estimate of $\Delta \mathbf{V}$

Integrate the approximate expression for $\mathbf{p} / \mathrm{m}_{2}$

$$
\Delta V_{1}=\int \frac{\left|\mathbf{p} \cdot \hat{\mathbf{a}}_{1}\right|}{m_{2}} d t \approx 4 m_{4} \sqrt{\frac{G}{m_{1} \rho_{4}}}\left[1+\frac{\pi}{2}\left(\frac{\rho_{4}}{r}\right)^{2}+2\left(\frac{\rho_{4}}{r}\right)^{3}\right]
$$

$=57 \mathrm{~m} / \mathrm{s}$ per month

$$
\begin{aligned}
\Delta V_{2} & =\int \frac{\left|\mathbf{p} \cdot \hat{\mathbf{a}}_{2}\right|}{m_{2}} d t \approx 4 m_{4} \sqrt{\frac{G}{m_{1} \rho_{4}}}\left[1-\left(\frac{\rho_{4}}{r}\right)^{3}\right] \\
& =49 \mathrm{~m} / \mathrm{s} \text { per month }
\end{aligned}
$$

Total $\Delta \mathrm{V}$ per month: $106 \mathrm{~m} / \mathrm{s}$ to hold S / C fixed, coincident with \mathcal{L}_{2}
$49 \mathrm{~m} / \mathrm{s}$ to allow S / C to move along the Sun-Earth line February 4, 2004

Excursions with and without lunar perturbation

Conclusion

- S/C must have propulsion to counter lunar perturbation.
- Lunar perturbation is expressed analytically, and evaluated numerically.
- Analytic and numerical estimates given for $\Delta \mathrm{V}$.
- Allowing S/C to move along Sun-Earth line requires less than half the $\Delta \mathrm{V}$ needed to keep it fixed at \mathcal{L}_{2}.
- First order analysis provided here: results obtained with optimal control presented in next paper (interesting motion!).

